5 research outputs found

    Multi-Objective Approaches to Markov Decision Processes with Uncertain Transition Parameters

    Full text link
    Markov decision processes (MDPs) are a popular model for performance analysis and optimization of stochastic systems. The parameters of stochastic behavior of MDPs are estimates from empirical observations of a system; their values are not known precisely. Different types of MDPs with uncertain, imprecise or bounded transition rates or probabilities and rewards exist in the literature. Commonly, analysis of models with uncertainties amounts to searching for the most robust policy which means that the goal is to generate a policy with the greatest lower bound on performance (or, symmetrically, the lowest upper bound on costs). However, hedging against an unlikely worst case may lead to losses in other situations. In general, one is interested in policies that behave well in all situations which results in a multi-objective view on decision making. In this paper, we consider policies for the expected discounted reward measure of MDPs with uncertain parameters. In particular, the approach is defined for bounded-parameter MDPs (BMDPs) [8]. In this setting the worst, best and average case performances of a policy are analyzed simultaneously, which yields a multi-scenario multi-objective optimization problem. The paper presents and evaluates approaches to compute the pure Pareto optimal policies in the value vector space.Comment: 9 pages, 5 figures, preprint for VALUETOOLS 201

    Markov decision processes with uncertain parameters

    Get PDF
    Markov decision processes model stochastic uncertainty in systems and allow one to construct strategies which optimize the behaviour of a system with respect to some reward function. However, the parameters for this uncertainty, that is, the probabilities inside a Markov decision model, are derived from empirical or expert knowledge and are themselves subject to uncertainties such as measurement errors or limited expertise. This work considers second-order uncertainty models for Markov decision processes and derives theoretical and practical results. Among other models, this work considers two main forms of uncertainty. One form is a set of discrete scenarios with a prior probability distribution and the task to maximize the expected reward under the given probability distribution. Another form of uncertainty is a continuous uncertainty set of scenarios and the task to compute a policy that optimizes the rewards in the optimistic and pessimistic cases. The work provides two kinds of results. First, we establish complexity-theoretic hardness results for the considered optimization problems. Second, we design heuristics for some of the problems and evaluate them empirically. In the first class of results, we show that additional model uncertainty makes the optimization problems harder to solve, as they add an additional party with own optimization goals. In the second class of results, we show that even if the discussed problems are hard to solve in theory, we can come up with efficient heuristics that can solve them adequately well for practical applications

    Equivalence and Minimization for Model Checking Labeled Markov Chains

    No full text
    Model checking of Markov chains using logics like CSL or asCSL proves whether a logical formula holds for a state of the Markov chain. It has been developed in the last decade to a widely used approach to express performance and dependability quantities for models from a wide range of application areas. In this paper, model checking is extended to prove formulas for distributions rather than single states. This is a very natural way to express certain performance or dependability measures that depend on the state of the system rather than on a specific state in the state space of the Markov chain. It is shown that the mentioned logics can be easily extended from states to distributions and model checking algorithms can also be easily adopted. Furthermore, new equivalences will be introduced that are weaker than bisimulation but still characterize the extended logics

    Markov Decision Petri Nets with Uncertainty

    No full text
    Markov Decision Processes (MDPs) are a well known mathematical formalism that combines probabilities with decisions and allows one to compute optimal sequences of decisions, denoted as policies, for fairly large models in many situations. However, the practical application of MDPs is often faced with two problems: the specification of large models in an efficient and understandable way, which has to be combined with algorithms to generate the underlying MDP, and the inherent uncertainty on transition probabilities and rewards, of the resulting MDP. This paper introduces a new graphical formalism, called Markov Decision Petri Net with Uncertainty (MDPNU), that extends the Markov Decision Petri Net (MDPN) formalism, which has been introduced to define MDPs. MDPNUs allow one to specify MDPs where transition probabilities and rewards are defined by intervals rather than constant values. The resulting process is a Bounded Parameter MDP (BMDP). The paper shows how BMDPs are generated from MDPNUs, how analysis methods can be applied and which results can be derived from the models
    corecore